AI TOOLS LAB

Course Code	20SO8453	Year	II	Semester	II	
Course Category	Skill Oriented Course	Branch	ME	Course Type	Lab	
Credits	1.5	L-T-P	1-0-2	Prerequisites	Probability, Statistics	
Continuous Internal Evaluation	-	Semester End Evaluation	50	Total Marks	50	

Course Outcomes: Upon successful completion of the course, the student will be able to

CO	Statement	Levels		
CO1	Apply various preprocessing techniques and Machine Learning/ Deep Learning	L3		
	methods on different datasets for a given problem.			
CO2	Implement various experiments in Jupiter Notebook Environment.			
CO3	Develop an effective report based on various learning methods implemented.	L3		
CO4	Apply technical knowledge for a given scenario and express with an effective	L3		
	oral communication.			
CO5	Analyze the outputs and visualizations generated for different datasets.	L4		

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											2	1	
CO2					2				2			1	1	
CO3										2			2	
CO4	3									1			1	

Syllabus

Any Ten Experiments (H/W or Simulation)

Expt. No.	Contents			
1	Apply Data pre-processing techniques.	CO1-CO5		
2	Construct a Machine Learning model using supervised learning method.	CO1-CO5		
3	Construct a Machine Learning model using Unsupervised learning method.	CO1-CO5		
4	Construct a Machine Learning model using Semi supervised learning method.	CO1-CO5		
5	Develop a Deep Learning model using supervised learning method.	CO1-CO5		
6	Develop a Deep Learning model using Unsupervised learning method.	CO1-CO5		
7	Build an AI application.	CO1-CO5		

Learning Resources

Text Books

- 1. Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015,
- 2. Pearson Education.
- 3. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press
- 4. Deep Learning (Adaptive Computation and Machine Learning series), Ian Goodfellow , Yoshua Bengio, Aaron Courville, <u>Francis Bach</u>, 2017, MIT Press

e-Resources & other digital material

- 1. <u>https://github.com/atinesh-s/Coursera-Machine-Learning-Stanford</u>
- 2. <u>https://github.com/Kulbear/deep-learning-coursera</u>